Faculty of Informatics / Mathematics

Publications

2024

Vogt, Stefan; Patolla, Paul; Metzler, Johannes; Reichelt, Dirk (2024): Towards digital twin-based dataspaces for industrial computer vision services. In: 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN), Aug. 2024, pp. 1–7. doi.org/10.1109/INDIN58382.2024.10774458.

Heik, David; Bahrpeyma, Fouad; Reichelt, Dirk (2024): Study on the application of single-agent and multi-agent reinforcement learning to dynamic scheduling in manufacturing environments with growing complexity: Case study on the synthesis of an industrial IoT Test Bed.Journal of Manufacturing Systems, Vol. 77, pp. 525-557, doi.org/10.1016/j.jmsy.2024.09.019.

Metzler, Johannes; Seiler, Paul Philipp; Haas, Till; Reichelt, Dirk (2024): YuMi-Chess: Applying Synthetic Image Generation to Real World Scenarios. In: 2024 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2024) (accepted)

Jäpel, Nicole; Bielitz, Pia; Reichelt, Dirk (2024): The Dresden Model of Adaptability: A Holistic Approach to Human-Centeredness, Resilience, Sustainability, and the Impact on the Sustainable Development Goals in the Era of Industry 5.0,Digital 4, no. 3: pp. 726-739. doi.org/10.3390/digital4030037.

Sunilkumar, Abishek; Bahrpeyma, Fouad; Reichelt, Dirk (2024): Positioning stabilization with reinforcement learning for multi-step robot positioning tasks in Nvidia Omniverse. In: 2024 INDIN (accepted).

Heik, David; Metzler, Johannes; Bahrpeyma, Fouad; Reichelt, Dirk (2024): Solving the dynamic scheduling problem using multi-agent reinforcement learning based on an encoded state representation. In: 2024 INDIN (accepted). 

Heik, David; Bahrpeyma, Fouad; Reichelt, Dirk; Böhm, Alexander (2024): Application of inhomogeneous QMIX in various architectures to solve dynamic scheduling in manufacturing environments In: 2024 INDIN (accepted). 

Mühlberg, Felix; Orawetz, Jimmy; Georg Freitag; Vogt, Stefan; Reichelt, Dirk (2024): Multisensory simulations for smart Personal Protective Equipment In: 2024 MetroXRAINE 2024 (accepted).

Jäpel, Nicole; Bielitz, Pia; Stoll, Elena; Reichelt, Dirk (2024): DreMoWabe – Dresdner Modell der Wandlungsbefähigung. In: Zeitschrift für wirtschaftlichen Fabrikbetrieb 119 (6), pp. 432–439. DOI: https://doi.org/10.1515/zwf-2024-1084.

Friedrich, Christian; Vogt, Stefan; Rudolph, Franziska; Patolla, Paul; Grützmann, Jossy Milagros; Hohmeier, Orlando et al. (2024): Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production. In: Journal of Machine Engineering, pp. 5-20. https://doi.org/10.36897/jme/188618.

Heik, David; Bahrpeyma, Fouad; Reichelt, Dirk (2024): Solving a Dynamic Scheduling Problem for a Manufacturing System with Reinforcement Learning. In: Kohei Arai (Ed.): Intelligent Systems and Applications. Proceedings of the 2023 Intelligent Systems Conference (IntelliSys) Volume 2. 1st ed. 2024. Cham: Springer Nature Switzerland; Imprint Springer (Lecture Notes in Networks and Systems, 823), S. 413–432. DOI: https://doi.org/10.1007/978-3-031-47724-9_28.

Veliu, Cäcilia; Petzold, Valetin; Reichelt, Dirk; Stange, Maximilian, Ihlenfeldt, Steffen (2024): A case study on the use of open source hardware in mechanical engineering.  Procedia CIRP Vol. 128, 2024, P. 680-685 doi.org/10.1016/j.procir.2024.03.042

Heik, David; Bahrpeyma, Fouad; Reichelt, Dirk (2024): Application of Multi-agent Reinforcement Learning to the Dynamic Scheduling Problem in Manufacturing Systems. In: Giuseppe Nicosia, Varun Ojha, Emanuele La Malfa, Gabriele La Malfa, Panos M. Pardalos und Renato Umeton (Ed.): International Conference on Machine Learning, Optimization, and Data Science. 9th International Conference, LOD 2023, Grasmere, UK, September 22–26, 2023, Revised Selected Papers, Part II. 1st ed. 2024. Cham: Springer Nature Switzerland; Imprint Springer (Lecture Notes in Computer Science, 14506), pp. 237–254. DOI: doi.org/10.1007/978-3-031-53966-4.

Heik, David; Bahrpeyma, Fouad; Reichelt, Dirk (2024): Adaptive manufacturing: dynamic resource allocation using multi-agent reinforcement learning. In: Jörg Reiff-Stephan, Jens Jäkel und Christian Stöcker (Ed.): Tagungsband AALE 2024. Fit für die Zukunft: Praktische Lösungen für die industrielle Automation. 20. AALE-Konferenz. Bielefeld, 06.03.-08.03.2024, pp. 227–240. DOI: https://doi.org/10.33968/2024.52.

Sunilkumar, Abishek; Bahrpeyma, Fouad; Reichelt, Dirk (2024): An overview of the applications of reinforcement learning to robot programming: discussion on the literature and the potentials. In: Jörg Reiff-Stephan, Jens Jäkel und Christian Stöcker (Ed.): Tagungsband AALE 2024. Fit für die Zukunft: Praktische Lösungen für die industrielle Automation. 20. AALE-Konferenz. Bielefeld, 06.03.-08.03.2024, pp. 249-257. DOI: https://doi.org/10.33968/2024.54.

Ringel, Robert (2024): Jupyter Notebook – Einsatz als digitale Lehr-Lern-Umgebung für aufgabenbasiertes Lernen am Beispiel eines Programmierkurses. In: jfhead (1), p. 12. DOI:  https://doi.org/10.55310/jfhead.45.

Ringel, Robert; Körndle, Hermann (2024): Ein kombiniertes Rahmenmodell zum Programmierenlernen. In: Schmolitzky, A: Klikovits, S. (Ed.): Software Engineering im Unterricht der Hochschulen 2024. Gesellschaft für Informatik; Fachtagung Modellierung. Bonn: Ges. für Informatik (GI-Edition lecture notes in informatics P, Proceedings, 161), pp. 25–37. DOI: https://doi.org/10.18420/seuh2024_02.

2023

Gehrhardt, Ingolf; Bahrpeyma, Fouad; Reichelt, Dirk (2023): A reference architecture for advanced QoS-based service selection in SOA-based SoS architectures. IBICA 23 - Innovations in Bio-Inspired Computing and Applications  (accepted)

Heik, David; Bahrpeyma, Fouad; Reichelt, Dirk (2023): Adaptive manufacturing: dynamic resource allocation using multi-agent reinforcement learning. AALE 2024 - 20. Konferenz für Angewandte Automatisierung in Lehre und Entwicklung (accepted)

Bielitz, Pia; Jäpel, Nicole; Heik, David; Reichelt, Dirk (2023): Ganzheitliche Wandlungsfähigkeit von Produktionssystemen – der Schlüssel zur Ressourcenwende? In: HMD. No. 60, pp. 1222–1236, 2023. DOI: https://doi.org/10.1365/s40702-023-01008-5.

Metzler, Johannes; Bahrpeyma, Fouad; Reichelt, Dirk (2023): An end to end workflow for synthetic data generation for robust object detection *. In: 2023 IEEE 21st International Conference on Industrial Informatics (INDIN), Lemgo, Germany, 18.07.2023 - 20.07.2023: IEEE, pp. 1–7. DOI: https://org/10.1109/INDIN51400.2023.10218035.

Weiss, Arno; Reichelt, Dirk (2023): Reusing OPC UA information models in the Asset Administration Shell. In: 2023 IEEE 21st International Conference on Industrial Informatics (INDIN), Lemgo, Germany, 18.07.2023 - 20.07.2023: IEEE, pp. 1–6. DOI: https://doi.org/10.1109/INDIN51400.2023.10218292.

Bahrpeyma, Fouad, Sunilkumar, Abishek; Reichelt, Dirk (2023): Application of Reinforcement Learning to UR10 Positioning for Prioritized Multi-Step Inspection in NVIDIA Omniverse. In: 2023 IEEE Symposium on Industrial Electronics & Applications (ISIEA), pp. 1–6. DOI: https://doi.org/10.1109/ISIEA58478.2023.10212317.

Stange, Maximilian; Jäpel, Nicole; Reichelt, Dirk; Ihlenfeldt, Steffen (2023): Open Source Hardware in Manufacturing – Opportunities and Challenges. In: Francesco Gabriele Galizia und Marco Bortolini (Ed.): Production Processes and Product Evolution in the Age of Disruption ]: Springer International PU (Lecture Notes in Mechanical Engineering), pp. 709–716. DOI: https://doi.org/10.1007/978-3-031-34821-1_77.

Heik, David; Bahrpeyma, Fouad; Reichelt, Dirk (2023): Solving a dynamic scheduling problem for a manufacturing system with reinforcement learning. IntelliSys 2023 - Intelligent Systems Conference (accepted)

Bahrpeyma, Fouad; Metzler, Johannes (2023): Synthetic data generation of chess pieces in Omniverse: extention of the use case to a manufacturing level application. INDIN 2023 IEEE International Conference on Omni-Layer Intelligent Systems (accepted)

Heik, David; Bahrpeyma, Fouad; Reichelt, Dirk (2023): Dynamic Job Shop Scheduling in an Industrial Assembly Environment Using Various Reinforcement Learning Techniques. In: Ajith Abraham, Sabri Pllana, Gabriella Casalino, Kun Ma und Anu Bajaj (Hg.): Intelligent Systems Design and Applications. Cham: Springer Nature Switzerland, pp. 523–533. DOI: https://doi.org/10.1007/978-3-031-35501-1_52

Gehrhardt, Ingolf; Bahrpeyma, Fouad; Reichelt, Dirk (2023): A Concept for QoS Management in SOA-Based SoS Architectures. In: Ajith Abraham, Sabri Pllana, Gabriella Casalino, Kun Ma und Anu Bajaj (Ed.): Intelligent Systems Design and Applications. Cham, 2023. Cham: Springer Nature Switzerland, pp. 271–285. DOI:https://doi.org/10.1007/978-3-031-27440-4_26

Telatko, Rocky; Reichelt, Dirk (2023): Systematic Approach for Investigating Temporal Variability in Production Systems to Improve Production Planning and Control. In: Journal of Manufacturing and Materials Processing7 (2), p. 78. DOI: https://doi.org/10.3390/jmmp7020078

Heik; David; Bahrpeyma, Fouad; Reichelt, Dirk (2023): Anwendung von Reinforcement Learning in industriellen cyberphysischen Systemen. In: Jörg Reiff-Stephan und Jäkel, Jens, Schwarz, André (Ed.): Tagungsband AALE 2023. Mit Automatisierung gegen den Klimawandel, 19. Fachkonferenz 8.-10. März 2023 in Luxemburg. 19. Konferenz für Angewandte Automatisierungstechnik in Lehre und Entwicklung an Hochschulen (AALE). Unter Mitarbeit von Hochschule für Technik, Wirtschaft und Kunst. DOI: https://doi.org/10.33968/2023.10

Jäpel, Nicole; Bielitz, Pia; Reichelt, Dirk (2023): Beschreibung und Bewertung der Wandlungsfähigkeit. In: Zeitschrift für wirtschaftlichen Fabrikbetrieb 118 (1-2), pp. 10–14. DOI: https://doi.org/10.1515/zwf-2023-1019

Zipfel, Justus; Verworner, Felix; Fischer, Marco; Wieland, Uwe; Kraus, Mathias; Zschech, Patrick (2023): Anomaly detection for industrial quality assurance: A comparative evaluation of unsupervised deep learning models. In: Computers & Industrial Engineering177, p. 109045. DOI: https://doi.org/10.1016/j.cie.2023.109045

Seiler, Philipp; Brandt, Eric; Brandt, Felix (2023): Systematic mapping study on the security and efficiency of blockchain in industrial context. In: Procedia Computer Science 217, pp. 1497–1505. DOI: https://doi.org/10.1016/j.procs.2022.12.349

2022

Heik, David; Bahrpeyma, Fouad; Reichelt, Dirk (2022): An Application of Reinforcement Learning in Industrial Cyber-Physical Systems. In: 21st International Conference of the Italian Association for Artificial Intelligence (AIxIA 2022) (Ed.) Short Paper Proceedings of the 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis, pp. 51–55. Available online at https://ceur-ws.org/Vol-3311/paper9.pdf

Bahrpeyma, Fouad; Reichelt, Dirk (2022): A review of the applications of multi-agent reinforcement learning in smart factories. In: Frontiers in Robotics and AI (Vol. 9), 2022, DOI: https://doi.org/10.3389/frobt.2022.1027340

Schneider, Germar; Patolla, Paul; Fehr, Matthias; Reichelt, Dirk; Zoghlami, Feryel; Delsing, Jerker (2022): Micro Service based Sensor Integration Efficiency and Feasibility in the Semiconductor Industry. In:  Infocommunications Journal, Vol. XIV, No 3, September 2022, pp. 79–85. DOI: https://doi.org/10.36244/ICJ.2022.3.10

Stange, Maximilian; Münnich, Marc; Bielitz, Pia; Reichelt, Dirk (2022): How to make energy flexibility business models work - the case for integration into existing ERP systems. In: 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4. DOI: https://doi.org/10.1109/ETFA52439.2022.9921467

Brandt, Eric; Brandt, Felix; Reichelt, Dirk (2022): Development of a Language Extension for Configuration of Industrial Asset Capabilities in Self-organized Production Systems. In: Kohei Arai (Hg.): Intelligent Computing, Bd. 506. Cham: Springer International Publishing (Lecture Notes in Networks and Systems), pp. 25–42. DOI: https://doi.org/10.1007/978-3-031-10461-9_2

Phan, Thuy Linh Jenny; Gehrhardt, Ingolf; Heik, David; Bahrpeyma, Fouad; Reichelt, Dirk (2022): A Systematic Mapping Study on Machine Learning Techniques Applied for Condition Monitoring and Predictive Maintenance in the Manufacturing Sector. In: Logistics, 6 (2), 35. DOI: https://doi.org/10.3390/logistics6020035

2021

Telatko, Rocky; Brandt, Eric; Brandt, Felix; Reichelt, Dirk (2021): Method for Identifying, Measuring and Quantifying Fluctuations in Production Systems. In: 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT). 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT) (1), pp. 154–159. DOI: https://doi.org/10.1109/CSIT52700.2021.9648617

Patolla, Paul; Reichelt, Dirk; Mothes, Dirk; Schneider, Germar (2021): An architecture for an automatic integration of IO-Link sensors into a system of systems. In: IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, pp. 1–6. DOI: https://doi.org/10.1109/IECON48115.2021.9589686.

Brandt, Eric; Brandt, Felix; Reichelt, Dirk (2021): Managing Manufacturing Assets with End-Users in Mind. In: Kohei Arai (Ed.): Advances in Information and Communication. Proceedings of the 2021 Future of Information and Communication Conference (FICC), Volume 2 Bd. 1364. [S.l.]: SPRINGER NATURE (Advances in Intelligent Systems and Computing), pp. 968–986. DOI: https://doi.org/10.1007/978-3-030-73103-8_70.

Brandt, Eric; Brandt, Felix; Clemens; Konstantin; Reichelt, Dirk (2021): AI-Supported Marketplace For Industrial Capabilities. In: 2021 IEEE 22nd International Conference on Industrial Technology (ICIT) Bd. 1, pp. 1397–1402. DOI: https://doi.org/10.1109/ICIT46573.2021.9453489.

Telatko, Rocky; Ihlenfeldt, Steffen; Reichelt, Dirk (2021): Generic Control Loop Model for Fluctuation Analysis in Production Systems. In: 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI). Timisoara, Romania, 5/19/2021 - 5/21/2021. (Ed.): IEEE, pp. 165–170. DOI: https://doi.org/10.1109/SACI51354.2021.9465603.

Telatko, Rocky; Maurer, Georg; Reichelt, Dirk (2021): Event-Based Data Acquisition for Production Process Analyses: A Systematic Mapping Study. In: 2021 IEEE 13th International Conference on Computer and Automation Engineering (ICCAE). Melbourne, Australia, 3/20/2021 - 3/22/2021. (Ed.): IEEE, pp. 105–110.  DOI: https://doi.org/10.1109/ICCAE51876.2021.9426134.

2020

Ghofrani, Javad; Patolla, Paul; Richter, Daniel; Reichelt, Dirk (2020): Conceptualizing A Configuration Service for Complex Automation Systems. Available online at https://arxiv.org/pdf/2003.13618.

Brandt, Felix; Brandt, Eric; Heik, David; Reichelt, Dirk; Ghofrani, Javad (2020): A Software Platform for Use Case Driven Human-Friendly Factory Interaction Using Domain-Specific Assets. In: Kohei, Arai; Kapoor, Supriya; Bhatia, Rahul. (Ed.): Proceedings of the Future Technologies Conference (FTC) 2020, Volume 3. Cham, 2020. Cham: Springer International Publishing, pp. 1032–1043. DOIhttps://doi.org/10.1007/978-3-030-63092-8_71.

Brandt, Felix; Brandt, Eric; Ghofrani, Javad; Heik, David; Reichelt, Dirk (2020): Asset Administration Shell: Domain Specific Language Approach to Integrate Heterogeneous Device Endpoints. In: Kohei, Arai; Kapoor, Supriya; Bhatia, Rahul. (Ed.): Proceedings of the Future Technologies Conference (FTC) 2020, Volume 3. Cham, 2020. Cham: Springer International Publishing, pp. 1044–1052. DOI: https://doi.org/10.1007/978-3-030-63092-8_72.

Brandt, Eric; Brandt, Felix; Reichelt, Dirk (2020): DSL-gestützte dynamische Generierung von Informationsmodellen: Ein Ansatz zur Erleichterung der Infrastrukturbeschreibung durch Mensch-Maschine-Interaktion. In: Jäkel, Jens; Thiel, Robert. (Ed.): Tagungsband AALE 2020. Automatisierung und Mensch-Technik-Interaktion: 17. Fachkonferenz, 4. März - 6. März 2020, HTWK Leipzig. [1. Neuerscheinung]. Berlin: VDE VERLAG GMBH, pp. 203–212. Available online at https://www.vde-verlag.de/proceedings-de/565180020.html.

Ghofrani, Javad; Loisha, Kirill; Reichelt, Dirk (2020): A Systematic Mapping Study on Blockchain Technology for Digital Protection of Communication in Manufacturing. In: 2020 IEEE 18th International Conference on Industrial Informatics (INDIN). Warwick, United Kingdom, 20-23 July 2020: IEEE (Ed.), pp. 275–282. DOI:https://doi.org/10.1109/INDIN45582.2020.9442181.

Heik, David; Ghofrani, Javad, Reichelt, Dirk (2020): Adaptive Management Shell for Mapping the Process Capability of Manufacturing Components:A Systematic Mapping Study. In: 2020 IEEE 18th International Conference on Industrial Informatics (INDIN). Warwick, United Kingdom, 20-23 July 2020: IEEE (Ed.), pp. 7–14. DOI: https://doi.org/10.1109/INDIN45582.2020.9442143.

Ghofrani, Javad; Deutschmann, Bastian; Divband-Soorati, Mohammed; Reichelt, Dirk; Ihlenfeldt, Steffen (2020): Cognitive Production Systems: A Mapping Study. In: 2020 IEEE 18th International Conference on Industrial Informatics (INDIN). Warwick, United Kingdom, 20-23 July 2020: IEEE (Ed.) (1), pp. 15–22. DOI: https://doi.org/10.1109/INDIN45582.2020.9442230.

Ghofran,Javad; Kouzegar, Ehsan; Bozorgmehr, Arezoo; Divband-Soorati, Mohammad (2020): Reusability in Artificial Neural Networks: an Empirical Study. In: Tagung Software Engineering (SE) der Gesellschaft für Informatik (GI). Available online at https://www.researchgate.net/publication/334318833_Reusability_in_Artificial_Neural_Networks_An_Empirical_Study.

Pampuch, Robert; Ghofrani, Javad; Reichelt, Dirk (2020): Development of a Mixed Reality Human Machine Interface – Concept, Design and Evaluation. In: Jäkel, Jens; Thiel, Robert (Ed.): Tagungsband AALE 2020. Automatisierung und Mensch-Technik-Interaktion: 17. Fachkonferenz, 4. März-6. März 2020, HTWK Leipzig. [1. Neuerscheinung]. Berlin: VDE VERLAG GMBH, pp. 273–276. Available online at https://www.vde-verlag.de/proceedings-de/565180029.html.

Wieczorek, Katrin; Ghofrani, Javad; Seiffert, Laura; Pampuch, Robert; Reichelt, Dirk (2020): Remote-Technologien in der industriellen Instandhaltung − Ein Überblick zum aktuellen Einsatz von Remote-Technologien in der Praxis. In: Industrie 4.0 Management (6), pp. 59–62.

2019

Ghofrani, Javad; Kirschne, Robert; Rossburg, Daniel; Reichelt, Dirk; Dimter, Tom (2019): Machine Vision in the Context of Robotics: A Systematic Literature Review. Available online at https://arxiv.org/pdf/1905.03708.

Ghofrani, Javad; Bozorgmehr, Arezoo (2019): Migration to Microservices: Barriers and Solutions. In: Florez, Hector et al. (Ed.): Applied informatics. 2nd International Conference, ICAI 2019, Madrid, Spain, November 7-9, 2019, proceedings Bd. 1051. Cham: Springer International Publishing (Communications in Computer and Information Science, 1051), pp. 269–281. DOI: https://doi.org/10.1007/978-3-030-32475-9_20.

Divband-Soorati, Mohammad; Krome, Maximilian; Mora-Mendoza, Marco; Ghofrani, Javad; Hamann; Heiko (2019): Plasticity in Collective Decision-Making for Robots: Creating Global Reference Frames, Detecting Dynamic Environments, and Preventing Lock-ins. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China, 3-8 Nov. 2019. (Ed.): IEEE, pp. 4100–4105. DOI: https://doi.org/10.1109/IROS40897.2019.8967777.

Ghofrani, Javad; Kozegar, Ehsan; Bozorgmehr, Arezoo; Divband-Soorati, Mohammad: Reusability in Artificial Neural Networks: An Empirical Study. In: Proceedings of the 23rd International Systems and Software Product Line Conference - Volume B, pp. 122–129. Available online at https://www.researchgate.net/publication/334318833_Reusability_in_Artificial_Neural_Networks_An_Empirical_Study. DOI: https://doi.org/10.1145/3307630.3342419.

Divband-Soorati, Mohammad; Heinrich; Mary Katherine; Ghofrani, Javad; Zahadat, Payam; Hamann, Heiko (2019): Photomorphogenesis for Robot Self-Assembly: Adaptivity, Collective Decisionmaking, and Self-repair. In: Bioinspiration & Biomimetics Journal (BB-IOP). 14, 2019. (Ed.): IOP Science (Ed.). Available online at https://iopscience.iop.org/article/10.1088/1748-3190/ab2958/pdf.

Ghofrani, Javad; Kouzegar, Ehsan; Fehlhaber, Anna Lena; Divband-Soorati (2019): Variability in Deep Neural Networks. In: Systems and Software Product Line Conference (SPLC). (Ed.): ACM.

Reichelt, Dirk; Ghofrani, Javad (2019): Using Voice Assistants as HMI for Robots in Smart Production Systems. In: 11th Central European Workshop on Services and their Composition (ZEUS). Bayreuth, Germany, February 14th–15th, 2019. (Ed.): CEUR Workshop Proceedings. Available online atr http://ceur-ws.org/Vol-2339/paper13.pdf.

Reichelt, Dirk; Starke, Erik; Lütkemeier, Matthias (2019): Tubing 4.0 – Simulationsgestützte Planung einer Green Field Fabrikerweiterung. In: 28. Deutscher Materialfluss-Kongress, Branchentreff der Intralogistik. München, Deutschland, 21. - 22. März 2019. (Ed.): VDI Verlag, pp 1-6.

Reichelt, Dirk (2019): RFID-Datenlogger als Cyber-Physisches System zum Condition Monitoring. In: 13. RFID-Symposium. Dresden, Deutschland, 05. - 06. Dezember 2019, AK Silicon Saxony e.V..

Reichelt, Dirk (2019): AR meets SPS – Ein echtzeitfähiges Mixed Reality Assistenzsystem für Wartungspersonal In: Internet of Things – vom Sensor bis zur Cloud (2019).

Reichelt, Dirk (2019): Smarte Co-/Robotik – Warum wir unserem Cobot Schach beibringen In: VDI-Forum „Digitalisierung der Produktion“ auf MOTEK 2019, VDI Verlag (Ed.).

Reichelt, Dirk (2019): Industrie 4.0 – Chancen für den Mittelstand In: 9. Ostsächsische Maschinenbautage.

Reichelt, Dirk (2019): Digitalisierung im Mittelstand am Beispiel der GSG Baubeschläge GmbH In: 9. Ostsächsische Maschinenbautage.

Reichelt, Dirk (2019): Auf dem Weg zur smarten Fabrik - Potenziale, Chancen und Risiken der Digitalisierung auf dem betrieblichen Hallenboden. In: Business Talk der Bundesagentur für Arbeit Dresden.

2018

Ghofrani, Javad; Fehlhaber, Anna Lena (2018): ProductlinRE: Online Management Tool for Requirements Engineering of Software Product Lines. In: Berger, Thorsten und Collet, Philippe (Hg.): 22nd International Systems and Software Product Line Conference. September 10-14, 2018, Gothenburg, Sweden: proceedings. SPLC '18: 22nd International Systems and Software Product Line Conference. Gothenburg Sweden, 10. - 14.09.2018. New York, New York: The Association for Computing Machinery (ICPS), S. 17–22. DOI: https://doi.org/10.1145/3236405.3236407.

Reichelt, Dirk (2018): Vom Sensor bis zur Cloud: Industrial IoT Anwendungen am Beispiel der Smart Factory der HTW Dresden. In: 1. Fachtagung Internet of Things/ Industrie 4.0 des VDE Dresden, VDE Verlag (Hrsg.).

Reichelt. Dirk (2018): AutoID- und Industrial IoT-Lösungen für Industrie 4.0-Szenarien in der Verpackungsindustrie. In: FachPack 2018 - Forum: AutoID- und Industrial IoT-Lösungen für Industrie 4.0-Szenarien in der Verpackungsindustrie.

Schmidt, Martin; Kurse, Marco; Reichelt, Dirk (2018): Entscheidungsunterstützung für energieeffiziente Fertigung. In: 31. AKWI Tagung 2018 in Hamburg.

Voß, Kim; Ringel, Robert; Reichelt, Dirk (2018): Standardisierte Modellierungskonzepte zur Systemintegration im Fertigungsumfeld. Wismarer Wirtschaftsinformatik Tage (WIWITA) 2018.

Reichelt, Dirk (2018): Industrie 4.0-Testumgebung – Potenziale der Smart Factory der HTW Dresden. In: 4. Sächsische Tag der AUTOMATION "Herausforderungen in der Automatisierungstechnik"

Reichelt, Dirk (2018): Online SPC mittels MS Azure. In: Arbeitskreis CPS des Silicon Saxony zum Thema Systeme und Anwendungen im IoT.

2017

Reichelt, Dirk; Jäpel, Nicole [et al.] (2017): Hochschulbildung Informatik in Sachsen. In: Bitkom e.V.; Silicon Saxony e.V; IT-Bündnis Chemnitz / Stiftung IBS; Cluster Informationstechnologie Mitteldeutschland e.V. (Ed.): Positionspapier für den Freistaat Sachsen, Berlin. Available online at https://www.bitkom.org/sites/main/files/file/import/170601-hochschulbildung-informatik-in-sachsen.pdf

 

more

Reichelt, Dirk; Mönch, Lars (2006): Multiobjective Scheduling of Jobs with Incompatible Families on Parallel Batch Machines. In: Gottlieb, Jens; Raindl, Günther (Ed.): Evolutionary computation in combinatorial optimization. 6th European conference, EvoCOP 2006, Budapest, Hungary, April 10 - 12, 2006 ; proceedings Bd. 3906. Berlin: Springer (Lecture Notes in Computer Science, 3906), pp. 209–221. DOI: https://doi.org/10.1007/11730095_18.

Reichelt, Dirk; Rothlauf, Franz (2006): CURE: Eine Reparaturheuristik für die Planung ökonomischer und zuverlässiger Kommunikationsnetzwerke mit Hilfe von heuristischen Optimierungsverfahren. In: Müller, Paul; Reinhard: Gotzhein, Reinhard; Schmitt, Jens B. (Ed.): Kommunikation in Verteilten Systemen (KiVS) 2005. 14. Itg/Gi-Fachtagung Kommunikation in Verteilten Systemen (Kivs 2005) Kaiserslautern, 28. Februar - 3. Marz 2005. Dordrecht: Springer (Informatik aktuell), pp. 283–294. DOI: https://doi.org/10.1007/3-540-27301-8_23.

Reichelt, Dirk; Gmilkowsky, Peter; Linser, Sebastian (2005): A Study of an Iterated Local Search on the Reliable Communication Networks Design Problem. In: Rothlauf, Franz et al. (Ed.): Applications of evolutionary computing. Evoworkshops 2005: EvoBIO, EvoCOMNET, EvoHot, EvoIASP, EvoMUSART, and EvoSTOC; Lausanne, Switzerland, March 30-April 1, 2005 ; proceedings Bd. 3449. Berlin: Springer (Lecture Notes in Computer Science, 3449), pp. 156–165. DOI: https://doi.org/10.1007/978-3-540-32003-6_16.

Reichelt, Dirk; Rothlauf, Franz (2005): Reliable Communication Network Design with Evolutionary Algorithms. In: Int. J. Comp. Intel. Appl. 05 (02), pp. 251–266. DOI: https://doi.org/10.1142/S146902680500160X.

Reichelt, Dirk; Rothlauf, Franz; Gmilkowsky, Peter (2004): Designing Reliable Communication Networks with a Genetic Algorithm Using a Repair Heuristic. In: Gottlieb Jens; Raidl, Günther. (Ed.): Evolutionary Computation in Combinatorial Optimization. 4th European Conference, EvoCOP 2004, Coimbra, Portugal, April 5 - 7, 2004 ; proceedings Bd. 3004. Berlin, Heidelberg: Springer (Lecture Notes in Computer Science, 3004), pp. 177–187. DOI: https://doi.org/10.1007/978-3-540-24652-7_18.