Your World, Our World: Resilient Environment and Sustainable Resource Management for All

Conception, Validation and Publication of ETL Processes for the Conversion of Geospatial Data for openBIM Projects with FME

Authors:

M. Eng. Christoph Frey – HTW Dresden - Faculty of Spatial Information

Dipl. Geoinf. Christian Dahmen – con terra GmbH

Prof. Dr. Ing. Christian Clemen – HTW Dresden - Faculty of Spatial Information

Acknowledgements:

Project partner: con terra GmbH

con terra

Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Problem Definition

- transforming **geodata** to **IFC** is challenging due to **differences** in purpose, semantics, geometry representation, or georeferencing
- info: the Industry Foundation Classes (IFC) provide a software vendor independent geometric-semantic data schema for openBIM projects
- current state: Transforming geodata to IFC is possible, however most tools export invalid or poor IFC models.
 - not using the richness of IFC (semantics, spatial structure, georeferencing)
 - the "IFC export" can not be customized according to the BIM project needs

Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Motivation:

Bi-directional Information Needs

©Robert Kaden, TU München

Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Info: FME is an Extract-Transform-Load (ETL) software for geospatial data

FME

- is suitable for **automatic data conversions**, running in the backend (server), e.g. as cronjob
- can be programmed with (easy) **visual programming** and additional python plug-ins
- provides "Reader" and "Writer" for many, many, many geospatial data formats
- provides many **functional blocks**, called "Transformer". E.g. buffer, coordinate-transformer, topology builder, terrain draping and many, many more
- has its main focus on **geospatial data**, however it supports IFC for openBIM projects

Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Background - IFC

Essential features of the IFC:

- open and text-based (ifc, ifcxml, ifcOwl/RDF)
- semantically structured, component-oriented
- object-oriented inheritance hierarchy
- spatial aggregation concepts
- separation of semantics and geometry
- objectified model relationships
- many different geometry model types
- semantically extensible (domain) and generically extensible (IfcPropertySets)

FIG Working Week 2024 Resilient Environment and Sustainable Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Aim of the Research

- development of **automated FME** workflows (geospatial data to IFC4)
- using FME Form as a **customizable** framework
- creation of high-quality IFC4 data
 - lossless transformation of geometry, topology, semantics and georeferencing in IFC
 - **preservation** of input attributes
 - creation of Property- and QuantitySets
- evaluate the **success** of the conversion

Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Data: 2D geospatial data (ALKIS: Cadastral parcels = GML with German semantics)

Accra, Ghana for All

Your World, Our World: Resource Management

Data: Digital Terrain Model (GeoTIFF, ca. 7 x 3.5 km)

Accra, Ghana for All

Your World, Our World: Resource Management

Data: Digital Terrain Model (DTM Breaklines, DXF)

Accra, Ghana

Your World, Our World: and Sustainable Resource Management for All

Methodology: Decision Tree

Decision tree as concept to...

map geospatial entities to corresponding IFC entities

determine attributes and parameters required for the transformation

identify potential challenges early in the process

develop resolution strategies for error handling

Serves for FME-independent communication with project partners

Accra, Ghana

Your World, Our World: and Sustainable Resource Management for All

Methodology and Realization

GeoTIFF

Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Excursus: geometry representation for terrain in IFC

GeometricCurveSet

- describes a 3D object through a collection of curves
- curves can be lines, arcs or complex shapes

ShellBasedSurfaceModel

- uses a shell to represent the outer surface of a 3D object
- shell consist of a collection of closed surfaces (faces)

IfcTriangulatedFaceSet (IFC4 only)

represents the surface of a 3D object by triangulation

ExtrudedAreaSolid

surfaces extruded along a path

GeometricCurveSet

ShellBasedSurfaceModel

TriangulatedFaceSet

ExtrudedAreaSolid

Accra, Ghana

Your World, Our World: and Sustainable Resource Management for All

Methodology and Realization

Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Excursus: Georeferencing in IFC4 and options in IFC2x3

- LoGeoRef10
 - postal address in IfcPostalAddress
 - referenced by IfcSite or IfcBuilding
- LoGeoRef20
 - geographic coordinate → RefLatitude, RefLongitude and RefElevation in IfcSite
- LoGeoRef50
 - offset between project coordinate system and global origin of a coordinate reference system in IfcMapConversion (with Easting, Northing, Orthogonal Height and rotation of XY-plane)
 - IfcProjectedCRS for metadata

Accra, Ghana

Your World, Our World: and Sustainable Resource Management for All

Methodology and Realization

GeoTIFF

Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Results – 2D cadastral data to IFC4

Accra, Ghana for All

Your World, Our World: Resource Management

Results – 2.5D terrain model to IFC4

FIG Working Week 2024 Resilient Environment and Sustainable Accra, Ghana for All

Your World, Our World: and Sustainable Resource Management

Summary

- our FME Workspace offers:
 - automated workflows for transforming geospatial data into high-quality IFC4 files
 - operates without static values
 - easily adjustable -> enables use of future IFC versions
 - preserves **semantics** and **spatial structure**
- limitations:
 - currently relies on external Python-based transformer for LoGeoRef50

Your World, Our World: and Sustainable Resource Management

Outlook

- automated **calculation** of **rotation** component for LoGeoRef50
- implementation of LoGeoRef 30 and 40
- more geometry representations e.g. CSG
- **more** data formats
- entire FME process is provided by con terra as Software as a Service
 - can be used to **extend** other existing processes

Accra, Ghana for All

Your World, Our World: Resource Management

Commission 10

Construction Economics and Management

Serving Society for the Benefit of People and Planet

